

Approaches for Guideline Versioning Using GLIF
Mor Peleg, Ph.D.1, Rami Kantor, M.D.2

1Stanford Medical Informatics and 2Division of Infectious Diseases and Center for AIDS
Research, Stanford University School of Medicine, Stanford, CA

Computer-interpretable clinical guidelines (CIGs)
aim to eliminate clinician errors, reduce practice
variation, and promote best medical practices by
delivering patient-specific advice during patient en-
counters. Clinical guidelines are being regularly
updated and revised to handle expanding clinical
knowledge. When revising CIGs, much effort can be
saved by specifying changes among versions instead
of encoding revised guidelines from scratch. A repre-
sentation of differences between versions could focus
the process of re-implementing CIGs in a clinical
environment and help users understand and embrace
changes. Guideline versioning has not been ade-
quately dealt with by existing CIG formalisms. We
present three approaches for CIG versioning. Focus-
ing on one approach, we developed a versioning tool
based on version 3 of the GuideLine Interchange
Format (GLIF3), and used it to represent two guide-
line versions for management of community-acquired
pneumonia (CAP) and the changes between them.

1 Introduction

Clinical guidelines aim to eliminate clinician errors,
reduce practice variation, and promote best practices.
CIGs are clinical guidelines encoded in a computer-
interpretable way and integrated with clinical infor-
mation systems. CIGs can deliver patient-specific
advice during clinical encounters, which makes them
more likely to affect clinician behavior compared
with narrative guidelines1. Many groups are develop-
ing formalisms for representing CIGs2. One of these
formalisms, on which we base this work, is GLIF33.
GLIF3 specifies guidelines as flowcharts of steps
representing clinical actions, decisions, and patient
states. The steps’ details generate a computable speci-
fication enabling logical consistency and inference.

Guidelines are living documents that must be regu-
larly updated and revised to handle expanding knowl-
edge, including new risk factors, drugs, diagnostic
tests, clinical studies, as well as pathogen incidence
and drug resistance in the infectious diseases field.
Corrective and perfection maintenance also change
guideline knowledge. Revised clinical guidelines ne-
cessitate CIGs update, involving significant time and
effort. This would make specifying changes among

versions more valuable, as opposed to encoding re-
vised guidelines from scratch. Moreover, representa-
tion of differences between a new guidelines version
and one that has already been implemented in a clini-
cal environment would greatly ease the implementa-
tion update process and would help users of the origi-
nal version to understand and embrace changes and
their justifications.

2 Related approaches for versioning
Despite the wealth of CIG formalisms, guideline ver-
sioning has not been adequately addressed by any of
them2. CIG formalisms do not go beyond allocating a
textual slot for indicating the version of the narrative
guideline to which the CIG corresponds. Versioning
of knowledge models is addressed in the related field
of clinical vocabulary systems4,5 and in, ontology-6,
database-7,8, and workflow-evolution9-11. We summa-
rize the approaches for versioning knowledge models,
in which changes are expressed in terms of change
operations. We looked at the way in which changes
between versions of knowledge models are recorded,
the way by which change operations are derived, and
the tasks supported by versioning.

Two approaches are used to record change opera-
tions: creating a log file as changes are made and
comparing two versions to produce a difference table.

Basic change operations are derived from the basic
elements of knowledge models and enable adding,
removing, and changing those elements. Thus, in vo-
cabulary systems terms can be added or removed and
the values of term attributes can be changed. In on-
tology evolution, basic operations include changes to
classes, slots, slot restrictions, and instances. In rela-
tional databases the basic elements that are changed
are relations and attributes, whereas in object-
oriented databases they are classes, is-a relations, and
attributes. Change operators in Workflows affect
variables, task attributes, and ordering of tasks.

Additional change operations are defined to support
versioning tasks. In vocabulary systems, the basic
change operations are further classified to reflect rea-
sons for change4,5. For example, term addition is clas-
sified to creating a new term, refining a previous

term, and replacing an ambiguous term. The semantic
taxonomy affects the tasks of querying data, and in-
terpreting previously encoded data. In ontology evo-
lution, the basic operations are refined to enable tasks
of preserving instance data, answers to queries, and
knowledge that was inferred from the instance data6.
As an example, moving a slot from class to class is
refined into distinct change operations, reflecting the
relationship between the two classes (e.g., subclass
relation). In database schema versioning, basic opera-
tors can be combined to define complex operations
such as class splitting and intersection7,8. These
operations support tasks of data and queries migra-
tion. Complex and reusable operators can be defined
based on basic operators11. These simplify the task of
specifying changes between workflow versions.

3 Approaches for versioning of GLIF3 CIGs

The approaches we’ve considered for versioning of
GLIF3 CIGs involve specification of a logical change
model, as well as development of tools for represent-
ing and visualizing changes.

3.1 Logical models for versioning of GLIF3 CIGs

We considered three models for representing changes
among CIG versions: log files, difference tables, and
version annotations.

Log files list the history of change operations that
were used to derive a new CIG version from an exist-
ing one. As Figure 1(a) shows, each entry in the log
file is characterized by the following attributes: (1)
operation type (add, retire), (2) version at which the
change was made, (3) ID of the instance that was
changed, and in the case of changes to slot values: (4)
slot whose value has changed, and (5) slot value.

Difference tables contain the results of comparing an
original version of a CIG with a revised version. Fig-
ure 1(b) shows an example of a difference table.

Version annotations allow maintaining several
guideline versions in a single knowledge base. Each
CIG element is annotated with version information. A
logical model that enables such versioning of GLIF3
instances requires an extension of the GLIF3 model
to represent versioning relations. GLIF3 is an object-
oriented logical model whose classes have slots (at-
tributes). Each slot is a binary relation between the
class to which it belongs and the allowed data type of
the slot’s value. In addition, a class can inherit the
slots of other classes. As shown in Figure 1(c), we
extended GLIF3 by defining two types of versioning
relations: (1) relations between GLIF3 classes and the
Version_Info class, and (2) slot relations, which are

ternary relations among a set of classes, a set of al-
lowed types, and Version_Info. Version_Info includes
slots for specifying the version ID, the change opera-
tion (add, retire), and the reason for change.

(a) Structure:
 Operation (version, instance, slot*, slot_value*)
 Log file:
 add(version2, Action2);

 retire(version2, Action1, tasks, Task1);

Operation Level Slot ref 1 ref 2
add instance Action2
retire slot value tasks Action1 Action1

Figure 1. Three ways of representing changes: (a)
log file; (b) difference table; (c) version annotations
used to extend the CIG ontology. * = optional; ref1,
ref2 = references to instance in version 1 and 2. Rec-
tangles denote ontology classes; Diamonds denote
relations. Extensions to the CIGs ontology are shown
in gray. Instances are shown in parentheses.

3.2 Tools for representing changes

To represent and visualize changes, we leveraged the
capabilities of the existing GLIF3 authoring tool12
that was developed using the Protégé-2000 knowl-
edge-modeling environment. We describe briefly
tools that support log files and difference tables, and
concentrate mainly on the tool that we developed to
support versioning annotations.

Users can create log files expressing changes between
versions. Logs could be automatically processed to
execute changes on the old CIGs, generating new
CIGs. This could be done, for example, through
commands in Algernon – a rule-based inference sys-
tem that has been interfaced with Protégé-200013.

CIG developers can use authoring tools to create a
CIG specification and revise it. The CIG versions
could be compared using tools such as PROMPTDIFF14,
which compares knowledge bases created in Protégé-
2000. The difference table that PROMPTDIFF creates
does not record the slot values that have changed.
Instead, users can view the instances that have
changed by clicking on table rows.

To support versioning annotations, we extended the
capabilities of the Protégé-2000 GLIF3 authoring tool

(b)

slot

n

n
n

has 1 Version_InfoClass
(Action2) (add, version2)(c)

(tasks) n
(Action1)

Class

Value Type

Version_Info

(retire, version2)

(Task1)

so that it could serve as a CIG versioning tool. Our
versioning tool can: (1) be used to create a new CIG
specification or to create a version of a CIG by modi-
fying an existing version, and (2) display versions of
a CIG in a single view, highlighting differences be-
tween them. To support the requirements of the ver-
sioning tool we implemented the logical model of
versioning relations. Since Protégé-2000 does not
represent slots as ternary relations, we simulated ter-
nary relations by changing the GLIF3 ontology:
• = We added a version_info slot: a binary relation

from GLIF3_Entity (i.e., a super class of all
GLIF3 classes) to the Version_Info class.

• = We transformed slots of simple types (e.g.,
STRING) into classes that have a slot of the sim-
ple type and a version_info slot

• = We changed the cardinality of single-valued slots
into multiple, so that we could keep slot values
that originate in different versions

To add or retire an instance, we set its Version_Info
to the current version and to the operation add or
retire. When we want to retire a slot value, we create
a new slot value, which is similar to the previous slot
value except for its version_info. This ensures that
other instances could still refer to the previous slot
value with its original version_info.

We use the version type change as a high-level ab-
straction of instances that have slot values containing
different version information.

3.3 Visualization of changes

We developed several visualization techniques to
facilitate human understanding of the changes be-
tween versions. One technique enables users to view
algorithms graphically, distinguishing their elements
according to their version information. Users can start
from the conceptual view of the algorithm and drill
down to the details of each algorithm element, shown
in forms. Currently Protégé-2000 enables only textual
distinctions. By setting the browser key as the version
slot of the entities, users can easily distinguish entities
that were changed, retired, or added. Future plans
include extension of Protégé’s capabilities to allow
color distinctions based on slot values.

Another visualization technique is to summarize
changes in tabular format, for better visualization. We
created queries in Protégé’s axiom Language (PAL)
that summarize changes to non-algorithmic guideline
knowledge elements of GLIF3. GLIF3 uses two
classes to specify non-algorithmic medical knowl-
edge: Concept and Concept_Relationship (CR). Con-
cepts (e.g., drug, diagnostic test) represent clinical

semantic types around which guideline knowledge is
organized. Concepts are specified by name and ID
that are taken from a controlled terminology. CRs
specify relations between pairs of concepts (e.g.,
Penicillin is-a Drug). CRs have slots for specifying
the two concepts and the type of relation between
them. Being GLIF3 entities, Concepts and CRs are
associated with version information. Queries use ver-
sion information to find knowledge elements that
have changed.

4 Case study: guidelines for pneumonia

We used the GLIF3 versioning tool that we devel-
oped to represent two guideline versions for man-
agement of CAP, that were developed by the Infec-
tious Disease Society of America in 1998 (version
1)15 and in 2000 (version 2)16. Figures 2 and 3 depict
screenshots of the GLIF3 versioning tool, showing
part of the CAP algorithm and details of one of the
algorithm steps that had changed.

Figure 2. Part of the CAP algorithm showing ele-
ments that harbor changes in bold. Rectangles de-
note action steps; diamonds denote patient state
steps; hexagons denote decisions. Three dots indicate
‘outpatient’ and ‘inpatient ICU’ algorithm parts,
with a similar as the shown ‘inpatient ICU’ part.
ICU: intensive care unit.

To encode the 1998 guideline in GLIF3, we designed
a generic algorithm for management of CAP. The
generic algorithm includes recommendations for gen-
eral diagnostic tests (radiology), which are subse-
quently refined to specific tests (X_Ray), and drug
groups, which are refined to specific medications. We
expect the generic design to make most common

……

Site of care
decision

Inpatient general
ward

Laboratory tests

Pathogen
undetermined

Outpatient

Laboratory tests
interpretation

Definitive therapy

Inpatient
ICU

History

Radiological evaluation

Empiric therapy

Pathogen
determined

Physical examination

changes easily updateable. Reasons for common
changes in recommendations include: new pathogen,
pathogen resistance, new drug, drug toxicity, new
diagnostic test, retired diagnostic test, new clinical
evidence, refuted clinical evidence, and unknown
reason. These reasons constitute the allowed values of
the reason_for_change slot of the Version_Info class.

Figure 3. Details of the action step “Laboratory
tests”, shown in Figure 2. Instead of using colors to
distinguish version information of each slot value,
information is represented textually. v1-version 1;
v2-version 2.

To represent non-algorithmic knowledge of the CAP
guideline, we specified concepts belonging to four
high-level concepts: drug, pathogen, clinical condi-
tion, and diagnostic test. We specified CRs of types:
Diagnostic_Test studies Pathogen, (Clinical) Condi-
tion has-likely Pathogen, Pathogen is-diagnostic-of
Condition, and Pathogen is-not-diagnostic-of Condi-
tion. We used CRs of type is-a are used to link a con-
cept to its parent concept (e.g., Carbapenem is_a
Drug). We created PAL queries to visualize concepts
and CRs that have changed. We used separate queries
for each type of CR. To query for changes in each of
the high-level concepts separately, we utilized is-a
CRs to trace each concept to one of the high-level
concepts. Figure 4 shows one of the queries. Table 1
summarizes medical knowledge that changed between
versions, calculated from query results.

Figure 4. A Query for changes in CRs of type ‘Condi-
tion has-likely Pathogen’. Only two of the results are
shown

Table 1. Summary of changes between versions asso-
ciated with clinical knowledge. For each knowledge
item, the number of instances that were retired and
added in version 2 are shown. ‘ret-retire; v2-version 2

Knowledge Item ret_v2 add_v2
Drugs 2 7
Patient clinical conditions (Conditions) 0 1
Pathogens 0 4
Diagnostic tests 0 0
Conditions have likely Pathogens 1 10
Pathogens are diagnostic of Conditions 1 0
Pathogens not diagnostic of Conditions 0 0
Diagnostic tests study Pathogens 0 4
Drug groups optional for Pathogens 4 5
Drug groups optional for Conditions 8 6

5 Discussion

In this paper we have described approaches for using
a GLIF versioning tool to revise a CIG specification.
Although we have concentrated on GLIF3, our ap-
proaches to versioning could easily be applied to
other CIG formalisms that have an object-oriented or
frame-based logical model, such as EON and
PRODIGY2, whose authoring tools are based on Pro-
tégé-2000.

The version-relations approach represents several
versions of a CIG in a single knowledge base, while
making the differences explicit. Institutions and/or
organizations that are publishing guidelines may use
the tool when updating versions. Using the versioning
tool, guideline developers will be creating concep-
tual-level specifications in GLIF3. This would greatly
simplify the development of a computable-level
specification. Using the tool would enforce consis-
tency, thus minimizing: knowledge gaps within a
guideline, ambiguous text, and lack of justification
for changes between versions.

Visualizing two guideline versions simultaneously
and noting the reasons for changes can assist users in
understanding the changes as well as facilitate and
focus the implementation of revised CIGs. The need
for revising CIGs can arise not only when institutions
that publish guidelines revise them, but also when
institutions adapt CIGs to their local environment.

The versioning approach that we pursued uses simple
change operations (i.e., add, retire), but, at the same
time, allows specification of reasons for changes.
Knowing the reason for making a change in a CIG is
important for clinicians who have been using a previ-
ous guideline version. The reasons for change were
considered by the vocabulary evolution schemes. In
those schemes, the reasons for changes are reflected
in the taxonomy of change operations. Although some
of the other approaches of model evolution, reviewed

in the Introduction, support a variety of syntactic as
well as complex change operations, they do not repre-
sent reasons for changes. Although our tool does not
support complex change operations, we use queries to
aggregate basic changes into meaningful patterns of
change. For example, changing the preference of a
drug for a certain situation from an alternative to a
preferred category is aggregated from the operations
of retiring the rule that recommends the drug as an
alternative option, and adding a rule that recommends
the same drug as a preferred option.

The way in which we represent changes in medical
knowledge could be used for indexing and searching
CIGs and CIG versions. Here, we organize medical
knowledge according to drugs, diagnostic tests,
pathogens, clinical conditions, and relationships
among these concepts. This can aid in selectively
searching for CIG versions according to their content,
which may exist in one version but not in the other.

Development of a tool to capture differences between
different versions of guidelines may be a first step
towards creation of mega-guidelines, which would
encompass all published guidelines in a certain field,
such as CAP. Based on a generic algorithm for ad-
dressing specific clinical circumstances, the tool
could enable noting differences among guidelines that
were created by different organizations. This could be
of help to practicing physicians, and could increase
the utilization of clinical guidelines, improving pa-
tient care.

Acknowledgements

We thank Samson Tu for his valuable comments.

References

1. Overhage JM, Tierney WM, Zhou XH, McDonald
CJ. A Randomized Trial of "Corollary Orders to Pre-
vent Errors of Omission.". J Am Med Inf Assoc
1997;4(5):364-375.

2. Peleg M, Tu SW, Bury J, Ciccarese P, Fox J, Gree-
nes RA, et al. Comparing Computer-Interpretable
Guideline Models: A Case-Study Approach. J Am
Med Inf Assoc 2003;10(1):52-68.

3. Peleg M, Boxwala A, Ogunyemi O, Zeng Q, Tu S,
Lacson R, et al. GLIF3: The Evolution of a Guideline
Representation Format. Proc AMIA Symp; 2000. p.
645-649.

4. Cimino JJ. Formal Descriptions and Adaptive
Mechanisms for Changes in Controlled Medical Vo-
cabularies. Meth Inform Med 1996;35:202-210.

5. Oliver DE, Shahar Y. ChangeManagement of
Shared and Local Versions of Health-Care Terminol-
ogies. Meth Inform Med 2000;39:278-290.

6. Noy NF, Klein M. Ontology Evolution: Not the
Same as Schema Evolution. Knowledge and Informa-
tion Systems, in press 2003.

7. Franconi E, Grandi F, Manderoli F. A Semantic
Approach for Schema Evolution and Versioning in
Object-Oriented Databases. In: Lecture Notes in
Computer Science 2065; 2000. p. 85-99.

8. Roddick JF, Craske NG, Richards TJ. A Taxon-
omy for Schema Versioning Based on the Relational
and Entity Relationship Models. In: International
Conference on Conceptual Modeling / the Entity Re-
lationship Approach; 1993; 1993. p. 137-148.

9. Casati F, Ceri S, Pernici B, Pozzi G. Workflow
Evolution. Data and Knowledge engineering
1998;24(3):211-238.

10. Kradolfer M, Geppert A. Dynamic Workflow
Schema Evolution Based on Workflow Type Ver-
sioning and Workflow Management. In: Proceedings.
3rd IFCIS International Conference on Cooperative
Information Systems; 1999. p. 104-114.

11. Joeris G, Herzog O. Managing Evolving Work-
flow Specifications with Schema Versioning and Mi-
gration Rules: University of Bremen; 1999. Report
No.: TZI Technical Report 15.

12. Peleg M, Patel VL, Snow V, Tu S, Mottur-Pilson
C, Shortliffe EH, et al. Support for Guideline Devel-
opment through Error Classification and Constraint
Checking. Proc AMIA Symp; 2002. p. 607-11.

13. Gennari J, Musen MA, Fergerson RW, Grosso
WE, Crubezy M, Eriksson H, et al. The Evolution of
Protege: An Environment for Knowledge-Based Sys-
tems Development. International Journal of Human-
Computer Interaction 2002;58(1):89-123.

14. Noy NF, Musen MA. PROMPTDIFF: A Fixed-
Point Algorithm for Comparing Ontology Versions.
AAAI/IAAI; 2002. p. 744-750.

15. Bartlett JG, Breiman RF, Mandell LA, File TM.
Community-Acquired Pneumonia in Adults: Guide-
lines for Management. Clinical Infectious Diseases
1998;26:811-838.

16. Bartlett JG, Dowell SF, Mandell LA, File TM,
Musher DM, Fine MJ. Practice Guidelines for the
Management of Community-Acquired Pneumonia in
Adults. Clinical Infectious Diseases 2000;31:347-
382.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 509
	02: AMIA 2003 Symposium Proceedings − Page 510
	03: AMIA 2003 Symposium Proceedings − Page 511
	04: AMIA 2003 Symposium Proceedings − Page 512
	05: AMIA 2003 Symposium Proceedings − Page 513

